
Hiroaki MENJO Nagoya University

LHCf/RHICf:  
   Zero degree measurements  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Zero-degree of collisions
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加速器実験でどこを測れば良い？
本研究で着目するのは、散乱の超前方(|η|>8.4)と呼ばれる領域

• ハドロン散乱のエネルギー流量は超前方領域にほとんど集中 
• 空気シャワーの発達に重要なのは超前方での粒子生成 
‣特に空気シャワーの大部分を構成する、電磁(EM)成分(主にπ0崩壊の

photon)がどう生成されるかが重要 => 本研究により検証

Physics at Zero degree 
✓Soft collisions, low-pT < 1GeV 

 → non-pQCD regime. 
 → Phenomenological model is needed 
✓High energy flux  

 → Most of longitudinal momentum is carried  
     by remnants of collisions.  

Central region

Fragmentation  
of remnants 

very forward region
LHC

RHIC

Detector 
(LHCf or  
 RHICf)

These are important for cosmic-ray physics, 
especially observation of  

ultra-high energy cosmic-rays 



Cosmic-rays
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UHECR observations
√
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Hadronic Interactions at UHEHadronic Interactions at UHE

[18 of 30]

Indirect observation by using the air shower technique 
Easy to have a large acceptance  
Uncertainty in the reconstruction  
of primary CR information.  

😊
😔

• Energy spectrum 
• Anisotropy  
• Chemical composition 

Method of UHECR observation

4

• UHECR is observed by using air shower (cascade reaction of 
primary cosmic rays with atmospheric particles).

• Using air shower MC, spectrum and arrival direction of primary 
cosmic rays are reconstructed.
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• UHECR is observed by using air shower (cascade reaction of 
primary cosmic rays with atmospheric particles).

• Using air shower MC, spectrum and arrival direction of primary 
cosmic rays are reconstructed.
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Composition measurement
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Xmax above 1017.2 eV, Measurements and Composition Implications Jose Bellido

Figure 4: The mean (left) and the standard deviation (right) of the measured Xmax distributions as a function
of energy compared to air-shower simulations for proton and iron primaries.

the tails of the Xmax distributions.
Between 1017.2 and 1018.33 eV the observed elongation rate (rate of change of hXmaxi) is

(79±1) g/cm2/decade (Fig. 4, left). This value, being larger than that expected for a constant mass
composition (⇠60 g/cm2/decade), indicates that the mean primary mass is becoming lighter with
increasing energy. At 1018.33±0.02 eV the elongation rate becomes significantly smaller ((26± 2)
g/cm2/decade) indicating that the composition is becoming heavier with increasing energy. The
fluctuations of Xmax (Fig. 4, right) decrease above 1018.3 eV, also indicating a composition becom-
ing heavier with increasing energy.

The mean value of lnA, hlnAi, and its variance, s2
(lnA), determined from Eqs. (1.1) and (1.2),

are shown in Fig. 5. For the parameters hXmaxip, fE and hs2
shi, the EPOS-LHC [7], QGSJetII-

04 [8] and Sibyll2.3 [9] hadronic interaction models are used. The unphysical negative values
obtained for s2

(lnA) result from the corresponding hadronic model predicting s(Xmax) values (for
pure compositions) that are larger than the observed ones. An average value of s2

(lnA) ' 1.2 to
2.6 has been estimated in [10] using the correlation between Xmax and S1000 (the signal recorded
at 1000 m). This range for s2

(lnA) is valid for the three hadronic models and for the energy
range lg(E/eV) = 18.5 to 19.0. The average s2

(lnA) from Fig. 5, for the same energy range, is
(0.8±0.4) for EPOS-LHC, (�0.7±0.4) for QGSJetII-04, (0.6±0.4) for Sibyll2.3. The QGSJetII-
04 and Sibyll2.3 models failed to provide consistent interpretation, and EPOS-LHC is marginally
consistent.

For the three models, similar trends with energy for hlnAi and s2
(lnA) are observed. The

primary mass is decreasing with energy reaching minimum values at 1018.33±0.02 eV, and then
it starts to increase again towards higher energies. The spread of the masses is almost constant
until ⇡ 1018.3 eV after which it starts to decrease. Together with the behavior of hlnAi, this is an
indication that the relative fraction of protons becomes smaller for energies above ⇡1018.3 eV.

The expected Xmax distributions for p, He, N and Fe have been parametrized [11] using a

45
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iron
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(ICRC2017)
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✓ Improvement of hadronic interaction models is  
one of the keys for UHECR studies. 

✓ LHC provide unique opportunities to verify the 
models at √s=14TeV (ECR=1017eV)

An event of  
observed air shower



p, n 
π+,π- π0

Cosmic-ray

• π0 → 2γ 
•  Induce  

electromagnetic  
showers which is 
dominant 
components of the 
shower.

•  bring the energy  
to next collisions  

•  Inelasticity: 
fraction of energy   
used for particle  
productions 
 k = 1 - Eleading/ECR 

Neutral pions 

Leading baryons

Hadronic interaction 
CR - N or O 

π0

γ

Leading p, n

They must be measured experimentally 
We do them at LHC and RHIC

Air shower developments and hadronic interaction 

These energetic π0 and n  
are always emitted into  
the very forward region.  
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LHCf experiment

RHICf experiment

- Zero degree measurement at CERN-LHC  
- Two calorimeter detectors (Arm1, Arm2)  
at ± 140 m from ATLAS IP 
-  Operations 

- Zero degree measurement at BNL-RHIC 
- Only one detector at 18 m from STAR IP 
- Spin asymmetry measurements  
with polarized proton beams  
- Operation: pp √s = 510 GeV (2017) 
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‣ pp: √s = 0.9 TeV (2010), 
      √s = 2.76 TeV (2013), 
      √s = 7 TeV (2010), 
      √s = 13 TeV (2015) 
‣ pPb: √sNN = 5 TeV (2013,2016) 
        √sNN = 5 TeV (2016) 

IP

LHCf and RHICf experiments
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LHCf experimental setup 
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ATLAS 
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Chapter3

ZDCDesign

3.1ZDCLocation

TheZDCsresideinaslotintheneutralbeamabsorbers(TAN).Fig.3.1schematically
showsthelocationoftheTANsandthustheZDCs.TheTANislocated140mfrom
theIP,andisrequiredtoabsorbthefluxofforwardhighenergyneutralparticles
thatwouldotherwiseimpingeonthetwinaperturesuperconductingbeamseparation
dipoles(D2).TheZDCsareplacedinaslotintheTANthatwouldotherwisecontain
inertcopperbarsasshielding,atthepointwherethebeampipetransitionsfromone
pipetotwo.Figure3.2showstwoconfigurationsofZDCmodulesintheTAN.The
twoconfigurationsarediscussedbelowinsection7.2.
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modules(right).TheTANis140mfromtheIP.
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LHCf

• 衝突点から±140mのビームパイプが分岐
する地点の直後に検出器を設置 
‣独立した２つの検出器, Arm1/Arm2 

• ゼロ度を含む超前方に生成された
(η>8.4)中性粒子( photon, π0, neutron )が
測定可能 
‣荷電粒子は陽子ビームと同様に磁場
で曲げられるため検出器には入射し
ない

Large Hadron Collider forward (LHCf) 実験

衝突点

140 m
96mm

Interaction point

η

∞

8.5

Shadow of beam pipes 

Arm1 and Arm2 
Calorimeter acceptance 

x [mm] 

y 
[m

m
] 
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Figure 2.2: The longitudinal structure of the LHCf calorimeters. In both figures, grey
and light blue parts represent tungsten and GSO-plate layers, respectively. GSO-bar
hodoscope for Arm1 and the silicon strip detector for Arm2 are shown in red and
orange, respectively. Particles enter from the left side of each figure.
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The LHCf/RHICf detectors

10

40mm

20mm
Arm1 
(RHICf)

• W (44 r.l  , 1.7λI ) and 16 GSO scintillator layers  
• Four positioning sensitive layers;  
    Arm1: XY-hodoscope of GSO bars (1mm step)  
    Arm2: XY-Silicon strip (160 µm step) 
• Each detector has two calorimeter towers,  
  which allow to reconstruct π0 
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The LHCf detectors
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Calorimeter performances
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Figure 4.18: Measured L90% distributions and template-fitting results in four energy
ranges of the Arm1 20 mm calorimeter. Black points represent the measured data,
while the green histograms are the results of the template fitting. Each of photon
and hadron contribution is shown as filled the red and the blue areas, respectively.
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3.5. Detector performances 67
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Figure 3.24: Neutrons energy resolution as a function of energy.
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Figure 3.25: Neutrons transverse position resolution as a function of energy.
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Figure 18. Position resolution of the GSO-bar hodoscope layers depending on the incident electron beam
energies. Black and white markers represent data and simulation results, respectively. Events within a
2(4) mm square around the center of the calorimeter were selected for the 20(40) mm calorimeter tower.

dependence of the calorimeter was reduced below the level of 1% after using the correction maps
generated from MC simulations. The linearity of the detector response to the beam energy has been
measured to be better than 0.5% for both Arm1 and Arm2 in the energy range between 100 and
250 GeV. After the calibration, we confirm that the detectors meet all the requirements of the LHCf
experiment for proton-proton collisions at 13 TeV.
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Figure 12. Energy dependence of the energy resolution of the Arm1 detector for data (filled circles) and MC
(open circles, shifted horizontally by 5 GeV). The events in a 4(8) mm ⇥ 4(8) mm square around the center
of the 20(40) mm calorimeter tower were selected.
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Figure 13. Energy dependence of the energy resolution of the Arm2 detector for data (filled circles) and
MC (open circles, shifted horizontally by 5 GeV). The events in a 5(10) mm ⇥ 5(10) mm square around the
center of the 25(32) mm calorimeter tower were selected.

The correction was tested by checking the position dependence of S for each calorimeter. Data
with 150 and 200 GeV electron beams were used for this study of Arm1 and Arm2, respectively.
The uniformity of calorimeter responses before and after correction is demonstrated in figure 14
and 15 for Arm1 and Arm2, respectively.
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Run Elab (eV) Photon Neutron π0

p-p √s=0.9TeV 
(2009/2010) 4.3x1014 PLB 715, 298 

(2012) -

p-p √s=2.76TeV 
(2013) 4.1x1015 PRC 86, 065209 

(2014) PRD 94   
032007 
(2016)p-p √s=7TeV 

(2010)
2.6x1016 PLB 703, 128 

(2011)
PLB 750 
360 (2015)

PRD 86, 092001 
(2012)

p-p √s=13TeV 
(2015) 9.0x1016 PLB 780, 233 

(2018)
JHEP, 2018, 73 

(2018) on-going

p-Pb √sNN=5TeV 
(2013,2016)

1.4x1016 PRC 86, 065209 
(2014)

p-Pb √sNN=8TeV 
(2016) 3.6x1016 Preliminary

RHICf  
p-p √s=510GeV 

(2017)
1.4x1014 on-going
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π0 measurement 
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Data
• 3 + 5 hour operations in June 2015 
• Arm1, one detector position 
• Dedicated trigger for Type1 events
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π0 spectra at pp, √s = 13 TeV
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Figure 4: Unfolded neutrons energy spectra for p-p collisions at
p
s = 13 TeV measured by

the LHCf Arm2 detector. Black markers are experimental data with statistical uncertainty,

whereas gray bands represent the quadrature sum of statistical and systematic uncertainty.

Histograms refer to models spectra at the generator level. Top are energy distributions ex-

pressed as d�n/dE and bottom are the ratios of these distributions to the experimental data.

8.99, respectively. In particular, they are compatible with data in the region

between 1.5 and 2 TeV, where neutron production is maximum, but they are

softer or harder otherwise. The other models underestimate (QGSJET II-04)

or overestimate (DPMJET 3.06, PYTHIA 8.212) the di↵erential cross section395

in all the energy range.

The general trend of experimental data is similar to what observed at
p
s= 7 TeV

[13]. Direct comparison of models can not be done because the version used here

is di↵erent respect to the one employed in [13]: in particular, QGSJET II-04,

EPOS-LHC and SIBYLL 2.3 were tuned using LHC Run I results. Comparing400

the pre-LHC and post-LHC version of SIBYLL, we can observe a significant

increase of the neutron production in all the pseudorapidity regions, fact that

improves the agreement of the model with experimental measurements. Di↵er-

ently, QGSJET and EPOS are not a↵ected by relevant changes. Whereas no

strong variation is found also in PYTHIA, DPMJET exhibits a very di↵erent405

neutron production in the two cases. Because no significant changes in di↵er-

ential cross section are expected between
p
s= 7 and 13 TeV, this variation is

18

• In η > 10.76, data shows a strong increasing of neutron production in the 
high energy region. This behavior is not predicted by all models. 

• EPOS-LHC and SIBYLL 2.3 have the best agreement in 8.99 < η < 9.22, 
8.81 < η < 8.99, respectively.
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Figure 4: Unfolded neutrons energy spectra for p-p collisions at
p
s = 13 TeV measured by

the LHCf Arm2 detector. Black markers are experimental data with statistical uncertainty,

whereas gray bands represent the quadrature sum of statistical and systematic uncertainty.

Histograms refer to models spectra at the generator level. Top are energy distributions ex-

pressed as d�n/dE and bottom are the ratios of these distributions to the experimental data.

8.99, respectively. In particular, they are compatible with data in the region

between 1.5 and 2 TeV, where neutron production is maximum, but they are

softer or harder otherwise. The other models underestimate (QGSJET II-04)

or overestimate (DPMJET 3.06, PYTHIA 8.212) the di↵erential cross section395

in all the energy range.

The general trend of experimental data is similar to what observed at
p
s= 7 TeV

[13]. Direct comparison of models can not be done because the version used here

is di↵erent respect to the one employed in [13]: in particular, QGSJET II-04,

EPOS-LHC and SIBYLL 2.3 were tuned using LHC Run I results. Comparing400

the pre-LHC and post-LHC version of SIBYLL, we can observe a significant

increase of the neutron production in all the pseudorapidity regions, fact that

improves the agreement of the model with experimental measurements. Di↵er-

ently, QGSJET and EPOS are not a↵ected by relevant changes. Whereas no

strong variation is found also in PYTHIA, DPMJET exhibits a very di↵erent405

neutron production in the two cases. Because no significant changes in di↵er-

ential cross section are expected between
p
s= 7 and 13 TeV, this variation is
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• In η > 10.76, data shows a strong increasing of neutron production in the 
high energy region. This behavior is not predicted by all models. 

• EPOS-LHC and SIBYLL 2.3 have the best agreement in 8.99 < η < 9.22, 
8.81 < η < 8.99, respectively.
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Forward neutrons  
@ RHIC, ISR

The peaked spectra  
are explained by  
a one-pion exchange  
model.

pT < 0.11 XF

pT < 0.28 XF 
@ η>10.76, 13TeV

⇔

Detailed comparison  
is needed

PRD 88 032006 (2013)
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Joint analysis with ATLAS
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Figure 1: Ntrack distribution in data compared to several MC model predictions for events in which the
LHCf-Arm1 detected a photon (in the region A or B) with E� > 200 GeV. All distributions are normalized
to the total number of events. Black points indicate the measured spectrum and lines represent MC
predictions, folded with the tracking e�ciency of the ATLAS detector. Blue lines indicate the inclusive
distributions, red lines the contribution from the proton di↵ractive dissociation events, and green lines the
contribution from the single-di↵ractive events. The inserts show a zoom of the data and model predictions
at small Ntrack. For these models only events with one particle-level photon (E� > 200 GeV and within
the LHCf-Arm1 acceptance) are used. The LHCf simulation shows that most of the multi-photon events
are rejected by the photon selection criteria and the fraction of multi-photon events remaining as a single-
reconstructed photon relative to the total event yield is less than 2%.

5

ATLAS-CONF-2017-075

• Event selection by Ntracks=0
 Ntracks: the number of tracks detected  
            by ATLAS inner trackers (|η|<2.5, pT > 100 MeV) 

Method

→ Selecting pure samples of proton dissociations. 
→ Sensitive to only low-mass dissociations　 
　 MX ≲ 50 GeV 

⇔ Large rapidity gap
Δη > 5

Identification of diffractive events by ATLAS
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Measurement of contributions of diffractive processes  
to forward photon spectra in pp collisions at √s = 13 TeV 
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Preliminary result of the measurement for forward photons is published  
in a conference-note; ATLAS-CONF-2017-075

Inclusive photon spectra Photon spectra w/ Nch = 0 selection



RHICf experiment 



RHICf experiment 
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RHIC at BNL

Arm1 detector  
in RHIC tunnel

•pp √s = 510 GeV  
(polarized beam) 

• Test of energy scaling with the wide pT range.  
• The operation was successfully completed  

in June 2017  
• Common operation with STAR 

18 mSTAR Detector 

RHICf coverage: 
        η > 6



θ

Physics in RHICf
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p

p

Sp Published preliminary results of  
Spin asymmetry (AN) for π0 

AN =
N" �N#
N" +N#

Spin asymmetry measurement  
p T

(G
eV
/c
)

Cross-section measurement  

LHCf@140mRHICf@18m

pT coverage: < 1/2 √s sinθ
LHC √s=7TeV 
RHIC √s =510GeV

✓Measurement of √s dependency (=Energy scaling)  
with the wide pT range equivalent to LHCf,√s=7TeV 
→ Improve the prediction power of models  
     in the wide energy rage.

A PhD student, M. Kim, 
is completing π0 asymmetry  
measurement  (next pages) 
 



spin asymmetry of π0 production
AN (transverse single-spin  
asymmetry ) measurement  

Large asymmetry was found  
in 1 < η < 4 (pT>~1GeV/c)  
Explanations  

Initial-stat effect ? final-stat effect ?  

Questions  
AN in the very forward region ? 
The RHICf detector covers  
η > 6,  pT < 1GeV/c.
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Transverse polarized proton collision 
• AN (transverse single-spin 

asymmetry) measurement 

• Azimuthal angle modulation (or 
dependence) 

• Large AN for forward hadron 
production 
• 1 < η < 4, similar results in wide √s

• TMD (Transverse Momentum 
Dependent) function and higher-
twist function 
• Initial-state effect or “Sivers” effect 
• Final-state effect or “Collins” effect 

• Hard scattering and/or non-
perturbative effect? 
• Diffractive scattering 

RightLeft
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−
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RHICf result: π0 spin asymmetry 
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AN of very forward π0

• pT dependence 
• Large asymmetry (up to 0.1) even at low pT (pT < 0.6 GeV/c)
• Becoming larger (more than 0.1) at high pT (0.6 GeV/c < pT)

Background asymmetry (measured, 
zero consistent) subtracted 

Data analysis has been performed 
by Minho Kim (Korea Univ.) 

Bar: statistical error 
Box: systematic uncertainties 
including beam center correction, 
acceptance correction, 
polarization, and background 
asymmetry subtraction 

June 10, 2019 10

Error bars : statistics  
Error box : systematic  

Data:
•   RHICf 2017 operation  

  with pp √s = 510GeV 
•   Use both type1 and  

  type2 π0 samples 

AN of very forward π0

• pT dependence 
• Large asymmetry (up to 0.1) even at low pT (pT < 0.6 GeV/c)
• Becoming larger (more than 0.1) at high pT (0.6 GeV/c < pT)

Background asymmetry (measured, 
zero consistent) subtracted 

Data analysis has been performed 
by Minho Kim (Korea Univ.) 

Bar: statistical error 
Box: systematic uncertainties 
including beam center correction, 
acceptance correction, 
polarization, and background 
asymmetry subtraction 

June 10, 2019 10

• Large asymmetry (up to 0.1 GeV/c) even at low pT (pT <  0.6 GeV/c) 
• Becoming large (more than 0.1 GeV/c) at high  pT (pT >  0.6 GeV/c)



Future plans of LHCf/RHICf
Operations at LHC, LHC-Run3 

pp, √s=13 or 14TeV again 
• Increasing the statistics of π0 and common events with ATLAS 
• measurement of η (η→2γ), K0s (K0s→2π0→4γ) 
• common-operation with ATLAS RP and ZDC 

pO (OO) collisions  
• Ideal for studying the cosmic-ray interactions of CR-Air  
• Measurement of nuclear effect at light ion collisions  

Operation at RHIC 
pp √s=510GeV again in 2022. 

• Increase the statistics of π0 
• measurement of η (η→2γ), K0s (K0s→2π0→4γ)

25



Kaons in atm. ν productions
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FIG. 4.3. Contribution from decays of various particles to the atmospheric µ

+ + µ

� (top left), ⌫µ + ⌫̄µ (top right), ⌫e + ⌫̄e

(bottom left) and ⌫⌧ + ⌫̄⌧ (bottom right) flux in Sibyll-2.3c and H3a primary model at ✓ = 60�.

several PeV and depends on the choice of models and
the zenith angle. Further sources of high energy muons
that are not included in our calculation are the photo-
production of muon pairs, which is suppressed by 10�4

wrt. the pair production cross section �e+e� [75], and the
nuclear interactions of muons. While the muon pair pro-
duction can significantly contribute to inclusive fluxes at
very high (PeV) energies, the nuclear interactions are
only important for the low energy tail of muon bundles
in air showers.

At E & 100 GeV the main source of muon neutrinos
(upper right panel) are semi-leptonic and 3-body decays
of charged kaons, see e.g. [61] for a more detailed discus-
sion of relevant channels. Pion and muon decays domi-
nate below this energy. Prompt neutrinos originate from
decays of charged and neutral D-mesons, where the fluxes
from D± are a factor of three higher. Since pions do
not decay into electron neutrinos (lower left panel), those
come mostly from decays of neutral and charged kaons.
At energies below 100 GeV and for near-horizontal zenith

angles the dominant fraction of electron neutrinos is from
muon decays, resulting in a strong association with the
muon flux. In turn, this means that the precision of the
electron neutrino prediction for a few to several tens of
GeV is linked to the modeling of pion production and
muon energy loss and, to a lesser extent, to kaon produc-
tion.

Atmospheric tau neutrinos (lower right panel) are rare
[35], but we can discuss their flux for completeness. The
dominant production channel of tau neutrinos is the de-
cay of D+

s

! ⌧

+ + ⌫⌧ , where the subsequent decay of
⌧ ! ⌫⌧ + X is more e�cient in producing a forward tau
neutrino, than the decay of the meson. Therefore most
of the tau neutrino flux comes from the decay of the tau
lepton itself (black and blue line in lower right panel in
Fig. 4.3).

Other sources of atmospheric leptons that are not
taken into account in our calculation are B-hadrons.
Their contribution to the prompt flux can be of the order
of 10% [64, 72].
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Atmospheric νµ flux

IceCube, ICRC2017

IceCube detected astronomical neutrinos.  
Better understanding of background  
(Atmospheric neutrinos) is required. 

Kaon

D mesons 



An idea for the future operation at RHIC
pp,√s=510GeV scheduled in 2022. 
Key of the operation  

High statistics of π0 events 
Detection of rare particles K0, Λ

27

η

∞

8.5

Maximize the acceptance  
with keeping the performances, good energy  
and position resolution for individual particles

K0s 4γ

IP
detector

Ideal detector: Si Pad calorimeter  
Collaboration required, with ALICE-FoCal ? with future EIC-ZDC ? 
  



Summary

28

LHCf/RHICf measures the energy spectra of neutral 
particles, γ,π0, and n in the very forward regions of 
collisions, which is important for understanding air-shower 
developments. 
Operations have successfully completed for  
   LHCf   pp: √s = 0.9, 2.76, 7, 13 TeV and  
              pPb: √sNN = 5, 8 TeV. 
   RHICf  pp:  √s = 510GeV (polarized beam) 
Many results were already published and many analyses 
are still on-going including the combined analyses with 
ATLAS or STAR.   
Future plan  

Operations at LHC with pp and pO (or OO) and  
operation at RHIC with pp 



Backup 



▪ Cross section
If large σine: rapid development 
If small σine : deep penetrating

▪ Very forward 
energy spectrum  

• If softer, shallow development 
• If harder, deep penetrating

• If small k (π0s carry more energy):  
  rapid development 

• If large k (baryons carry more energy):     
  deep penetrating

	 ▪ Secondary interactions  
 (n, p, π) 

▪ Secondary particle multiplicity 
▪ Forward angular emission  
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２次粒子多重度 (dN/dη) ２次粒子エネルギー流量 (dE/dη)
charged + neutral
p-p √s=13TeV Pseudorapidity

加速器実験でどこを測れば良い？
本研究で着目するのは、散乱の超前方(|η|>8.4)と呼ばれる領域

• ハドロン散乱のエネルギー流量は超前方領域にほとんど集中 
• 空気シャワーの発達に重要なのは超前方での粒子生成 
‣特に空気シャワーの大部分を構成する、電磁(EM)成分(主にπ0崩壊の

photon)がどう生成されるかが重要 => 本研究により検証

Multiplicity Energy Flow

Pseudorapidity η Pseudorapidity η

The coverage of  
the “wide” rapidity range 
by experiments is crucial  

 
Especially  

High Energy Flux   
in “forward” region  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π0 pT spectra at pp,7TeV
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Monte Carlo study of diffraction in proton-proton collisions
at

p
s = 13 TeV with the very forward detector

Qi-Dong Zhou, Yoshitaka Itow, Takashi Sako, Hiroaki Menjo
Nagoya University
zhouqidong@isee.nagoya-u.ac.jp

Abstract
Diffractive and non-diffractive collisions are totally different hadronic interaction processes, the diffractive processes are hardly predicted theoretically. This leads to the significant differences in the treatments of diffraction in the hadronic

interaction model. Due to the very forward detector has unique sensitivity to the diffractive processes, it can be a powerful detector for the detection of diffractive dissociation by combining with the central detector. Central detector can give the
information to help the forward detector to identify diffractive and non-diffractive events, especially, for the low mass diffractions which are not measured precisely.

Introduction

The inelastic hadronic collisions are usually classified into soft processes and hard processes, according
to the characteristics of the energy scales of hadron size and the momentum transfer – t. Most parts
of the hard processes can be treated within the theoretical framework, based on the perturbative
quantum chromodynamics (QCD) due to the large – t. However, it is inadequate to describe the soft
processes such as diffractive dissociations. Instead, a phenomenology of soft hadronic processes
was employed to describe these processes at high energies, based on the Regge theory. Therefore,
it is extremely important to constrain the phenomenological parameters based on the measurement
data for correct understanding of various diffractive processes and their accurate contribution to the
total inelastic collisions.

Diffractive dissociation

In high energy proton-proton interactions, the Regge theory describes diffractive processes as the
t-channel reactions, which is dominated by the exchange of an enigmatic object with vacuum quan-
tum numbers so called Pomeron. There is an operational characteristic of diffractive interactions,
which is a large angle separation between the final state systems so called rapidity gap �⌘. The �⌘

size and the location of them in the pseudorapidity phase-space can be used to determine the type
of the diffractions. In the SD case, it has been known that the relationship between the observable
�⌘ size and ⇠

X

is �⌘ ' �ln(⇠
X

). where ⇠

X

= M

2
X

/s. It is known that the �⌘ size and inelasticity
has relationship as K

inel

' exp(��⌘) [1]. The impact of the cross section of SD to the Air shower
average X

max

was studied in [1] as shown in Fig. 1.

Figure 1: The left pad illustrates the single-diffraction with the pomeron exchanged in a proton-proton collision. M
X

is
the invariant masses of the dissociated systems X. The right pad shows the average X

max

for the default QGSJET-II-04
model (solid), option SD+ (dashed), and option SD- (dot-dashed) [1].

Diffractive and non-diffractive contributions to the LHCf photon
spectra

Figure 2: The LHCf detectors and their location.

In this analysis, all the events of each simulation samples are classified to non-diffractive and diffrac-
tive collisions by using MC flags. The simulated LHCf photon spectra are shown in the right pads of
Fig. 3 for fiducial area, |⌘| >10.94. Clearly, the non-diffraction and diffraction implemented in each
model are very different, especially, the diffractive contribution of PYTHIA8212DL has a big excess
at the large energies. This leads to the big discrepancy between PYTHIA8212 and data, which are
shown in the left pad of Fig. 3 .
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Figure 3: The LHCf photon spectra in pp collisions at
p
s = 13 TeV. The photon spectrum at ⌘ > 10.94 are shown by

comparing with hadronic interaction models. The diffractive contribution of EPOS-LHC, QGSJET-II-04, SYBILL 2.3 and
PYTHIA 8212DL are shown.

Identification of diffraction with ATLAS track information

Criteria of diffraction selection

Treatments N

track

=0 N

track

1 N

track

2 N

track

5

Efficiency(✏) 0.493 0.556 0.619 0.691
Purity(p) 0.995 0.991 0.982 0.950

Table 1: The efficiency and purity of diffraction selection
with different ATLAS veto selection conditions.

The identification of diffraction requires
large rapidity gap, consequently small
number of particles is expected in the
central detector, for instance, the ATLAS
detector. Basic idea in this analysis is if
an event has a small N

track

, it is more
likely a diffractive event. In the other

words, existence of charged tracks in the ATLAS rapidity range is used to veto non-diffrative events.
It is assumed that the ATLAS detector can count the number of charged particle tracks, N

track

, with
p

T

>100 MeV at |⌘| < 2.5. Performance of ATLAS-veto event selection were studied for different
criteria as listed in Table 1. According to MC true flags, events can be classified as non-diffraction
(ND), CD, SD and DD. By applying the ATLAS-veto selection to each event, the selection efficiency
(✏) and purity (p) of diffractive event selection are defined as

✏ =
(N

ND

+N

CD

+N

SD

+N

DD

)
ATLAS veto

N

CD

+N

SD

+N

DD

(1)

p =
(N

CD

+N

SD

+N

DD

)
ATLAS veto

(N
ND

+N

CD

+N

SD

+N

DD

)
ATLAS veto

. (2)

where N

ND,CD,SD,DD

means number of event in each event category. The suffix
ATLAS veto

means
number of event after applying the ATLAS-veto event selection. Consequently,
• no charged particle (N

track

=0) in the kinematic range |⌘| <2.5 and p

T

>100 MeV,

is adopted as ATLAS-veto selection condition.

The performance of ATLAS-veto selection

To evaluate the performance of the ATLAS-veto selection based on the LHCf spectra, the LHCf
spectra were classified to non-diffractive-like and diffractive-like according to ATLAS-veto selec-
tion. The accurate performances of the selection were evaluated by adapting the Eq.1 and Eq.2 to
the LHCf photon spectrum.
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Figure 4: The efficiency and purity of diffraction selection by using ATLAS veto technique correspond to up and down
pads on the figure of right side. The efficiency is the ratio of histogram of ATLAS veto to diffraction in the left pads, and
the purity is calculated by dividing the histogram of diffraction@veto to ATLAS veto in the left pads.

Low-mass diffraction

According to QGSJET-II-04 simulation predictions, most of the LHCf detected events survived from
the ATLAS-veto selection are from the low-mass diffraction as shown in Fig. 5. In particular, all
the LHCf detected low-mass diffractive events at log10(⇠x) < -5.5 survived from the ATLAS-veto
selection. Therefore, the forward detector combine with central detector can give a constraint to the
treatment of low-mass diffraction implemented in the MC simulation models.

Figure 5: The SD (pp ! pX ;
blue) cross section as a func-
tion of log10⇠X predicted by us-
ing QGSJET-II-04 MC samples.
Which is compared with the
SD cross section after applying
the ATLAS-veto selection (red).
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Conclusions

• The non-diffraction and diffraction have different contribution in the very forward regions, while
the hadronic interaction models also show big discrepancies with each other.

• The veto selection by using central information is an effective way to identify the diffractive events
and classify the forward productions to non-diffraction and diffraction.

• The very forward detector combined with central information give an unique chance to constrain
the differential cross sections of low-mass diffractions.
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DPMJET	and	Pythia	overestimate	over	all	E-pT	range	

PRD	94	(2016)	032007

π0 pZ (~E) spectra at p+p,7TeV
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34

ATLAS-CONF-2017-075Ratio (Nch=0/Inclusive)
η > 10.94 8.81 < η < 8.99

• At η>10.94, the ratio of data increased from 0.15 to 0.4. 
with increasing of the photon energy up to 4TeV.

• PYTHIA8212DL predicts higher fraction at higher energies.
• SIBYLL2.3 show small fraction compare with data at η>10.94.
• At 8.81 < η < 8.99, the ratio of data keep almost constant as 0.17.
• EPOS-LHC and PYTHIA8212DL show good agreement with data at  8.81 < η < 8.99.
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Figure 4: Comparison of the photon spectra obtained from the experimental data and MC

predictions. The top panels show the energy spectra, and the bottom panels show the ratio of

MC predictions to the data. The hatched areas indicate the total uncertainties of experimental

data including the statistical and the systematic uncertainties.
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QGSJET II-04

EPOS-LHC

QGSJET II-04

EPOS-LHC

EPOS-LHC  Good agreement in < 3,4 TeV of both high/low-η 
QGSJET II-04 Very nice overall agreement in the high-η  
                       Softer in the low-η 
SIBYLL 2.3    Very nice overall agreement in the high-η  
                       Harder in the low-η

Photon at p-p, 13TeV
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Figure 5.10: Measured photon energy flow after the correction for ine�ciency of
the low energy photons and corresponding MC predictions in p–p

p
s=13 TeV. MC

predictions are shown in colored lines, while measured data at each ⌘ region are shown
in black points. Measured energy flows are plotted with the estimated systematic and
statistical errors. In the region of ⌘ >10.94, �⌘ is assumed as �⌘ =13-10.94.

results by 5–8 %. No models are consistent with the measured data at the highest

⌘ bin, 13 > ⌘ > 10.94. The measured data results indicate that the photon energy

flow by QGSJETII-04 is smaller in all measured ⌘ regions. The lack of the photon

energy flow of QGSJETII-04 is a level of 30 %. The corrected results and the model

predictions are summarized in Tab. 5.3.

5.3 Discussion

In this chapter, we summarize the obtained results of the very-forward photon pro-

duction in terms of the energy spectrum and the energy flow measurement and the

corresponding model predictions. Since the agreement of the results obtained with

the Arm1 and the Arm2 detectors has been already confirmed in Sec.4.6.1, the dis-

cussion here is built on the obtained results of the wide ⌘ acceptance calculated with

the Arm1 detector in this chapter. In order to consider the impact of this work

110

dE

d⌘
= Cthr
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�⌘

X

Ej>200GeV

EjF (Ej)

Energy Flow Calculation:

F(Ej) : Measured differential cross-section 
Δη    : The pseudo-rapidity range 
Cthr    : Correction factor for the threshold  
           200 GeV→ 0 GeV.  

Ref: Y. Makino CERN-THESIS-2017-049

ALICE FoCal
CMS CASTOR

EPOS-LHC, SIBYLL2.3   
             Good agreement  
QGSJET II-04                   
             ~ 30% lower than data
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4.5. Correction factors 93
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Figure 4.12: Template fits relative to three energy bins on pseudorapidity region
0: from the top to the bottom, the first one, a medium one and the last one. The
binning of the L2D scale was defined according to the expected statistics in each
energy bin. QGSJET II-04 hadrons (blue) and photons (red) distributions were
fitted to experimental data (black). The result of the fit is shown in green.

Analysis
• Particle Identification 

    EM shower → develop in shallow layers  
    Hadronic showers → develop in deep layers  

• Energy resolution of 40%  
• Contamination of Δ0, K0 

L2D (PID estimator) Distribution
5.25 TeV< En < 5.5 TeV 

Motivation
• Inelasticity measurement kinela  

  kinela = 1 - Eleading/Ebeam  
• Large discrepancies between data and model prediction  

were found in the measurement at p-p, √s=7TeV   

Neutron, p-p √s=13TeV

Data
• 3 hour operation in June 2015 
• Low pile-up, µ~0.01   


